Featured post

Estimation of Energy Storage Requirement by 2032

Energy storage requirement for Solar PV connected to grid In this post, energy storage requirement in India by 2032 is given here. The ESS r...

08/06/2019

Conduction, Convection and Radiation


Modes of heat transfer

The heat transfer from one medium to another medium by any of the following methods
( 1 ) Conduction
( 2 ) Convection
( 3 )  Radiation
( 1 ) Conduction
  • The heat transfers from one part of substance to another part without movement in the molecule of substance. 
  • The heat transfer takes places between object and direct contact. 
  • The rate of conduction of heat along the substance depends upon the temperature difference.
Example : e.g. heating of insulating materials, 
  • The amount of heat transfer through cubic body with two parallel plates during T hours is given by
Q = [ kA ( T1 – T2 ) / t ] T Mega Joules
Where
k = Co – efficient of thermal conductivity of the material ( MJ / m3 / oC / hour )
t = Thickness of cubic body
A = Cross section area of plate
T1 = Temperature of first plate in centigrade
T2 = Temperature of second plate in centigrade
( 2 ) Convection
  • The heat transfers from one part to another part of substance due to actual motion of molecules. 
  • The rate of conduction of heat mainly depends upon difference in fluid density at different temperature. 
Example : Boiling water, immersion heater, ice melting, hot air balloon, radiator
  • The heat dissipation is given by H = a ( T1 – T2 )b Watt / meter2
( 3 ) Radiation
  • The radiation does not require any heat transfer medium. 
  • The heat transfer takes place through electromagnetic waves. 
  • The object is not necessary to be in direct contact with another object to transmit heat. 
  • The energy transmission through electromagnetic waves is called as radiant energy.
Exmaple : Sun energy , solar heaters
  • The rate of heat dissipation through radiation is given by
        H = 5.72 × 104 ke [ ( T1 / 1000 )4 - ( T2 / 1000 )4 ] watt / meter2
Where
T1 = Temperature of source in Kelvin
T2 = Temperature of substance to be heater in Kelvin
k = Radiant efficiency
   = 1 Single element
   = 0.5 to 0.8 for several elements
e = Emissivity
   = 1 for Black body
   = 0.9 for resistance heating element
  • The radiant heat is directly proportional to difference of the fourth power of the temperature.
Final Conclusion points
  • The speed of conduction and convection is slower than radiation. 
  • The radiation obeys the law of reflection and refraction whereas the conduction and convection do not follow it. 
  • The conduction mainly occurs in solids through collision of molecules whereas the convection occurs in fluids by mass motion of molecules.
  • The radiation takes places through the vaccum of space. 
  • The conduction takes place due to temperature difference whereas the convection takes place due to density difference.
You may also like : 


No comments:

Post a Comment